Dust Aerosol Optical Depth Retrieval and Dust Storm Detection for Xinjiang Region Using Indian National Satellite Observations
نویسندگان
چکیده
The Xinjiang Uyghur Autonomous Region (Xinjiang) is located near the western border of China. Xinjiang has a high frequency of dust storms, especially in late winter and early spring. Geostationary satellite remote sensing offers an ideal way to monitor the regional distribution and intensity of dust storms, which can impact the regional climate. In this study observations from the Indian National Satellite (INSAT) 3D are used for dust storm detection in Xinjiang because of the frequent 30-min observations with six bands. An analysis of the optical properties of dust and its quantitative relationship with dust storms in Xinjiang is presented for dust events in April 2014. The Aerosol Optical Depth (AOD) derived using six predefined aerosol types shows great potential to identify dust events. Cross validation between INSAT-3D retrieved AOD and MODIS AOD shows a high coefficient of determination (R2 = 0.92). Ground validation using AERONET (Aerosol Robotic Network) AOD also shows a good correlation with R2 of 0.77. We combined the apparent reflectance (top-of-atmospheric reflectance) of visible and shortwave infrared bands, brightness temperature of infrared bands and retrieved AOD into a new Enhanced Dust Index (EDI). EDI reveals not only dust extent but also the intensity. EDI performed very well in measuring the intensity of dust storms between 22 and 24 April 2014. A visual comparison between EDI and Feng Yun-2E (FY-2E) Infrared Difference Dust Index (IDDI) also shows a high level of similarity. A good linear correlation (R2 of 0.78) between EDI and visibility on the ground demonstrates good performance of EDI in estimating dust intensity. A simple threshold method was found to have a good performance in delineating the extent of the dust plumes but inadequate for providing information on dust plume intensity.
منابع مشابه
Performance Evaluation of Detector Algorithms of Dust Storms in Arid Lands (Case Study: Yazd Province)
Introduction: In recent years, frequency and intensity of dust storms have been increased because of human destructive activities and caused significant loss in different aspects of hygienic and health, environmental and socio-economic sections. Therefore, detection and trace of dust storms in shortest time is the first effective step in preparation and implementation of strategic and operation...
متن کاملInvestigating the relationship between ground-level particulate matter and aerosol optical depth during dust storm episodes: a case study of Tehran
Background and Objective: During the last few years, air pollution and increasing levels of particulate matters (PMs) have become major public health issues in the megacity of Tehran. The high cost of constructing and maintaining air pollution monitoring stations has made it difficult to achieve adequate spatial-temporal coverage of PM data over various regions. In this regard, the use of remot...
متن کاملبهره گیری از سری زمانی داده های ماهواره ای به منظور اعتبارسنجی کانون های شناسایی شده تولید گرد و غبار استان البرز
Dust is one of the common processes of arid and semiarid regions that its occurrence frequencies has increased in recent years in Iran. The proper identification of sand and dust storms (SDS) is particular importance due to its impact on the environment and human health. So far, several methods for identifying these sources have been proposed such as methods based on field studies and geomorpho...
متن کاملAerosol Optical Depth Spatial and Temporal Variability Using Satellite Data Over Indian Major Cities
Introduction: The study’s main aim is to investigate the long-term variation of Aerosol Optical Depth (AOD). It also aims to show the relationship between meteorological parameters. This study evaluates long-term (2010 to 2021) special and temporal changes over major Indian regions using satellite-based data from NASA’s Terra Satellite. Materials and Methods: This study was carried out during ...
متن کاملMultiplatform analysis of the radiative effects and heating rates for an intense dust storm on 21 June 2007
[1] Dust radiative effects and atmospheric heating rates are investigated for a Saharan dust storm on 21 June 2007 using a combination of multiple satellite data sets and ground and aircraft observations as input into a delta-four stream radiative transfer model (RTM). This combines the strengths of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and CloudSat satellites a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016